Low Temperature Solid Oxide Fuel Cells for micro-CHP Applications (256694)

Ellart de Wit
HyGear Fuel Cell Systems

http://www.fch-ju.eu/
The LOTUS consortium

LOTUS is:

the development, construction and testing of a μCHP system based on low temperature SOFC stack technology

Duration: 3 years (1 January 2011 - 31 December 2013) + extension of 6 months (30-6-2014)
Budget: € 2,955 → FCH- Contribution: € 1,632

<table>
<thead>
<tr>
<th>Partner</th>
<th>Main task in Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyGear Fuel Cell systems (NL)</td>
<td>Coordinator, system design and construction</td>
</tr>
<tr>
<td>SOFCPower (I)</td>
<td>SOFC stack development</td>
</tr>
<tr>
<td>Fraunhofer IKTS (D)</td>
<td>System modeling</td>
</tr>
<tr>
<td>Domel (Slo)</td>
<td>Gas- Air system development</td>
</tr>
<tr>
<td>University of Perugia (I)</td>
<td>User profile input, SOFC single cell testing</td>
</tr>
<tr>
<td>European Commission/ JRC (B)</td>
<td>SOFC stack testing, test harmonization</td>
</tr>
<tr>
<td>Associated partner: Vaillant (D)</td>
<td></td>
</tr>
</tbody>
</table>
• 6 month delay due to stack production delay (origin by causes outside project)
WP2: Cell improvements

- New material, high performances at low temperature
 - Improvement mainly cathode and barrier layer
- Performance improvements of approx. 75%
 - VI and durability tests performed
- Round robin test between SOFCpower and FClab facilities was carried out
 - Good reproducibility (<10% difference, due to temperature differences)
WP2: Short Stack improvements

Test conditions:

\[T_{\text{air out}} = 600 - 750 \, ^\circ C \]

Fuel: \(\text{H}_2/\text{N}_2 \) 60/40 (\(\text{H}_2 = 1.44 \text{ NL/min} \))

Air: \(\lambda = 3 \)

Comparison between SoA (red marks) and improved (blue one) cells
• **WP3: System Design & Modeling**
 – System Requirements Document (SRD) was compiled at joint workshop
 – *Based on Customer demands*
 – *Basis for system design and process layout*
 – 0-D SOFC stack model was parameterized using ASC measurement data
 → *Basis for system performance estimation*
 – System design and preliminary process layout calculation was
 → *Basis for component design and system engineering*
 – Dynamic process modeling ready
 → *Next step validation of the model using system data*
• Double staged impeller blower by Domel developed
 – Improved lifetime
 – Built and tested at Domel, prototype is delivered

• Single blower strategy → lower number of components to improve reliability and cost
• **Simplification of hardware**
 – Single blower
 – Single burner
 – Certification ready design

• **Modules built, tested and improved**
 – E.g. second iteration on evaporator
 • First design was tested
 – providing data for modeling and testing principles.
 • 2nd generation less bulky
 • Easier to insulate
 • Low cost design
 • Same functionality: flue gas cooling, steam generation, gas mixing
• System built together with dummy stack to develop controls without stack damage

• LOTUS module testing

• The LOTUS system
The LOTUS project is delayed:

- Further stack improvements on sealing need pilot production equipment – supplier of stack conditioning equipment in delay
- Shipment damage of dummy-stack
• **Main events to come:**
 – System testing (w/o stack) on-going
 – Stack delivery to HFCS dec 2013 (M 36)
 – Working prototype Jan 2014 (M 37)
 – System testing and model validation Jan – Jun 2014
• LOTUS is part of Application area AA3: micro-CHP residential, natural gas based
 – Electrical efficiency > 45%
 • LOTUS Modeling data: ±43%. Measurement data available 2014.
 – CHP efficiency > 80%
 • LOTUS Modeling data: ±80% : design for very low heat loss
 – System cost: €5000 / 1kWe in 2020
2. Alignment to MAIP/AIP

- LOTUS cost prediction: meeting the MAIP

<table>
<thead>
<tr>
<th>Module/component</th>
<th>Cost estimate (>10,000 pcs)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>€ 520</td>
<td>Supplier info</td>
</tr>
<tr>
<td>Air Preheater</td>
<td>€ 650</td>
<td>Supplier info</td>
</tr>
<tr>
<td>Burner/Reformer assy</td>
<td>€ 910</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>Blower</td>
<td>€ 130</td>
<td>Supplier info</td>
</tr>
<tr>
<td>Controls</td>
<td>€ 195</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>CHP Hex</td>
<td>€ 130</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>Steam generator</td>
<td>€ 260</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>Inverter</td>
<td>€ 975</td>
<td>PV info</td>
</tr>
<tr>
<td>BoP</td>
<td>€ 650</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>Enclosure</td>
<td>€ 325</td>
<td>Engineering calc.</td>
</tr>
<tr>
<td>Total</td>
<td>€ 4,745</td>
<td></td>
</tr>
</tbody>
</table>
2. Alignment to MAIP/AIP

- **Cost of € 5,000/kW**
 - **Reduction of SOFC temperature to 650°C**
 - Rational: Use of less expensive materials; Longer life-time
 - Status: single cell and short stack tests are ongoing with good results so far
 - **Simplify system design**
 - Rational: Less components lowers costs and increases reliability; Combining functions within same hardware
 - Status: New system design model made combining functions: e.g. 1 blower, 1 burner for start-up and peak burning, combine steam generator with gas mixing
 - **Use commercial available components**
 - Rational: Use of less expensive materials: proven reliability and long life-time
 - Status: several components sourced and in house
2. Alignment to MAIP/AIP

- Develop system for real market conditions
 - LOTUS will deliver a prototype unit
 - BUT, is based on Voice-of-customer demands and requirements
 - System Requirement Document finished

- Input from Vaillant GmbH
- Input from market analysis HyGear, SOFCPower
- Using user profiles North and South Europe
 - Vaillant GmbH
 - University of Perugia
• Training and Education within LOTUS
 ➢ University of Perugia makes students familiar with fuel cells and their applications

• Safety, Regulations, Codes and Standards
 ➢ System will be designed to meet CE criteria, which includes creation of a HAZOP document and a FMEA
 ➢ Harmonization of testplans for single cells, stacks and systems

• Dissemination and public awareness
 ➢ LOTUS website
 ➢ Partners are taking part in many other international projects
 ➢ Partners are members of many (inter)national organizations (IPHE, IEA HIA, EHA, etc)
4. Enhancing cooperation and future perspectives

- Technology transfer/collaborations
 - Vaillant GmbH. as associated partner provides input on the customer specifications
 - National collaborations in all partner countries on Fuel Cell Technology
 - Specific national collaboration on SOFC CHP:
 - Italy: Efeso
 - Interactions with other EU SOFC projects: (ADEL), DESIGN...
 - Technology improvement in HyGear, DOMEL, SOFCpower products
 - Component reliability improvements
4. Enhancing cooperation and future perspectives

• Collaboration with other European funded SOFC projects: ADEL, SUAV, Design
• Partner discussions on further collaboration on-going
 – Market approach plan
 – Size range
 – Market uptake
 – JDA