Piaggio Aerospace:

Fuel Cells in Unmanned Aerial Vehicle – Research Perspectives
“Rinaldo Piaggio” is founded in Genoa as a rolling-stock manufacturer

Piaggio acquires “Società Anonima Navigazione Aerea” in Genoa and “Costruzioni Meccaniche Nazionali” in Pontedera

Aircraft manufacturing is started

The P166 and P166M aircraft are created for the Italian Air Force

First flight of the P180 Avanti prototype aircraft

The company splits: one branch is dedicated to the motorbikes manufacturing, the other to the aeronautical markets. “Industrie Aeronautiche e Meccaniche Rinaldo Piaggio SpA” is founded

A strategic alliance with Ferrari is started

Mubadala becomes shareholder of the company

Mubadala becomes the major shareholder of the Company and the brand name becomes “Piaggio Aerospace”

Subsidiary Piaggio America is established

Tata Limited becomes new shareholder of the Company
Villanova d’Albenga plant

- New state-of-the art facility
- Designed to implement the latest lean manufacturing technologies

- Total Area: 129,000 sqm
- Current Workforce: 600
- Currently transferred activities:
 - Headquarter
 - Aircraft Design
 - Engine Parts Manufacturing
 - PW200 Engine Assembly & Test
 - Engine MRO
 - Aircraft production (ex Finale Ligure)
 - Laboratories
 - Iron Bird & Aircraft Structural Testing LAB
Genoa Customer Support & Training plant

- Total Area: 5,000 sqm
- Current Workforce: 150
- Activities:
 - P180 Maintenance
 - P166 Maintenance & Upgrade
 - Product Support
 - Training Center for maintenance personnel (MTO) (*)

(*) = Temporarily moved in Genova Aircraft production offices
P.180 AVANTI EVO, evolution of P.180 AVANTI II, embodies the following upgrades:

- Low Noise propulsion system (Propellers and Exhaust duct)
- Additional Fuel Tank for Increased Range
- New Landing gear with new steering
- Antiskid
- New Integrated ECS (Environmental Control System)
- New Integral Winglet System
- LED External Lights
- SBAS (Satellite Based Augmentation System) Capability

Range increased by 17% (from 2725 km to 3185 km)

Fuel consumption and CO2 emissions reduced by 3%

Noise reduced by 68% external, 20% internal

Climb performance improved by 3%
The Piaggio Aerospace P.1HH HammerHead is a new, state-of-the-art UAS (Unmanned Aerial System), designed for ISR (Intelligence, Surveillance and Reconnaissance) missions, whose combination of performance and operational characteristics is at the very top end of the UAS MALE category.

- VCMS (Vehicle Control & Management System)
- MMS (advanced Mission Management System)
- VCMS and MMS are commanded from a GCS (Ground Control Station) via an airborne Datalink system
- air vehicle command & control by LOS/BLOS (Line Of Sight/Beyond Line Of Sight)
- payload digital encrypted data transmission via RF links/SATCOM
Next Generation UAS MALE Persistence Increase

- Predator A
- Heron
- Hermes 900
- Hermes 1500
- Harfang
- Dominator
- MQ-1C
- Global Hawk RQ-4B

Break through in power plant is needed with aim of:

- Higher Specific Energy Fuel
- Higher Specific Power Engine
- Lower Specific Fuel Consumption

3 times endurance
Higher Specific Energy Fuel

Hydrogen gas has the highest specific energy but the lowest energy density. Obtain higher energy density using compressed hydrogen.
Liquid H2 Powered

Boeing Phantom Eye high-altitude, long-endurance unmanned aircraft system

Demonstrates the potential of a “stratospheric, persistent directed energy” platform.

Performed nine flights with 54,000 ft altitude and 9hrs endurance

Question:

Is liquid H2 power plant able to cope with both propulsion and non propulsion power requirements?
MALE UAS need a significant non propulsive power (50+ KW) for auxiliary (anti-ice, flight control etc.) and surveillance systems (Radar, EO/IR etc.)

Propulsive power required depending on the speed, altitude, payload but not less than 500 KW total.
Siemens new prototype electric motor specifically designed for aircraft that weighs in at just 50 kg (110 lb) and is claimed to produce about 260 kW.

Twin engines solution could allow MALE UAS up to 9 tons MTOW, of which 5 tons for powerplant+fuel budget.
Requirements for Fuel Cell Powered MALE UAV

PEM fuel cells have achieved specific power of up to 1.2 kW/kg in the 100 kW range.

MALE needs minimum fuel cell in the range of 250-300 KW (twin fuel stack).

Specific Power must be of 1KW/Kg in the 250-300 KW range.
Requirements for LH2 storage MALE UAV

Development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet for long flight duration of MALE UAV.

Material selection, manufacturing and fabrication process are also a key factor.

Research in the area of storage of LH2 for aircraft and spacecraft has been conducted for many years but still a need of research in the durable, lightweight cryogenic propellant storage and feed systems are required to enable the development of hydrogen-fueled MALE UAV.

The weight budget for feasible UAV MALE of 3-4 days endurance must be less than 1 ton.
Conclusion

Could the feasibility to implement a fuel cell in a MALE UAV be asserted?

The answer is yes but the following efforts in research must be achieved:

Fuel cell technology is still immature at large size but can be improved in terms of weight, volume, and costs reductions for propulsive and non-propulsive power need.

In the case of a MALE UAV, it is essential to minimize the weight of the overall propulsion system including the LH2 storage system.

Reliability and Safety must be a key factor to meet the requirements of efficient and safe operation.
Thank you for your attention!