Future European Fuel Cell technology: Fit for Automatic Manufacturing and Assembly

Thomas Wannemacher
Proton Motor Fuel Cell GmbH

Programme Review Days 2019
Brussels, 19-20 November 2019
PROJECT OVERVIEW

- Call year: 2016
- Call topic: FCH-01-1-2016 Manufacturing technologies for PEMFC stack components and stacks
- Project dates: 1st March 2017 – 29th February 2020
- % stage of implementation 01/11/2019: ~80%
- Total project budget: 2,999,185 €
- FCH JU max. contribution: 2,999,185 €
- Other financial contribution: None
- Partners: Uniresearch BV, Proton Motor Fuel Cell GmbH, IRD Fuel Cell A/s, Aumann GmbH, Fraunhofer IWU, Technische Universitaet Chemnitz, UPS Europe SA
PROJECT SUMMARY – Project Objectives

- **Project Acronym:** Fit-4-AMandA

- **Project Full Title:** Future European Fuel Cell technology: Fit for Automatic Manufacturing and Assembly

- **Project Main Objective:** develop, validate and demonstrate step changes in term of cycle time, manufacturing cost, yield and reliability in two critical steps in the production PEMFC systems, i.e. the production of the MEAs and the assembly of the stacks.

Machine is READY and delivered at PM!
PROJECT SUMMARY – Project Objectives

Project technical objectives:
1. Establish the **technological roadmap** to scale up from less than hundred stacks/year to **50,000 stacks per year**.
2. Redesign (adaptation) of current MEA and stack design to optimise the designs for manufacturability.
3. Development of an alternative concept to graphitic BPP based on a metallic BPP technology.
5. **Design and development of an automated processing** unit/system for the manufacturing of key/critical stack components, i.e. MEAs.
7. Validation of the developed designs, hardware, tools and software for the automated production of MEAs and automated stack assembly and the fast-inline NDT-QA test methods.
8. Integration and field testing using one of the first prototype stacks manufactured by the automated processes into a light commercial vehicle.
PROJECT SUMMARY – Positioning vs State-of-the-art

- Global positioning vs international state-of the art

<table>
<thead>
<tr>
<th>Characteristics and Key performance indicators (KPIs)</th>
<th>Fit4AMandA targets</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production time for one stack (throughput time)</td>
<td><0.5 Hours</td>
<td>40 hours</td>
</tr>
<tr>
<td>Automated production process steps</td>
<td>90% automation grade per stack</td>
<td>10% automation grade per stack</td>
</tr>
<tr>
<td>Testing time (automated and manually)</td>
<td>1 hour</td>
<td>1 day</td>
</tr>
<tr>
<td>Costs per stack</td>
<td>>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Reduction of scrap (e.g. broken Bipolar Plates per Stack during production)</td>
<td>0</td>
<td>10 per stack</td>
</tr>
<tr>
<td>Non accepted tests: Rework and unbundling of stack</td>
<td>0</td>
<td>Every 10th stack needs to be reworked</td>
</tr>
<tr>
<td>Tightness and leakage of the stack</td>
<td>0</td>
<td>Every 10th stack needs to be reworked</td>
</tr>
</tbody>
</table>

- Application and market area

The project targets will result in strong reduction of the cost of the PEMFC stacks.
The achievement of the CAPEX targets will allow the introduction and roll out of PEMFC technology in specific automotive applications (e.g. urban delivery van, city buses and regional buses).
PROJECT PROGRESS/ACTIONS - Redesign Stack Design

Achievement to-date

Previous PM Stack Design

Status at month 32 of a 36 months project at date 01/11/2019

- Bipolar plate design (footprint) and flow field structures have been optimised ➔ finished 100%
- Redesign of sealing concept for implementation of the new MEA ➔ finished 100%
- Development of two concepts (7-layer MEA and seal-on GDL+CCM) ➔ finished 100%
- Design implementation of an advanced restrain concept ➔ finished 100%
- New stack design is currently being tested ➔ ~ 50%

Without the results of the current tests, no statements can be made about the stack performance (KPI)!
First indications are promising...
PROJECT PROGRESS/ACTIONS – Mass manufacturing machine (MMM)

Achievement to-date:

- Manually stacking

25% 50% 75%

MMM is designed, built, commissioned and in operation

Status at month 32 of a 36 months project at date 01/11/2019

- Machine is now at the final location at PM
- Currently commissioning is being carried out
- Final approval and proof of KPI is still pending
PROJECT PROGRESS/ACTIONS – Fast inline test methods

Achievement to-date

In-person visual inspection of components

- Measurement area: ~600 cm²
- Defects: length few mm, width 10’s of µm
- Time: >10 s/plate

→ Compromise necessary

Feasibility tests*) (integrity and seal test)

Status at month 32 of a 36 months project at date 01/11/2019

- In-line NDT-QC testing conceptualised, candidates selected and implemented in MMM

- Top: offline detection; bottom: unsuccessful in-line profile measurement of sealing bead

 Successful result of a pass/fail in-line test

Detected defect

*) Top: offline detection; bottom: unsuccessful in-line profile measurement of sealing bead

25% 50% 75%

In-line NDT-QC testing conceptualised, candidates selected and implemented in MMM

\[\text{Crack \sim 16 \text{ um wide}} \]
Risks and Challenges

Risks have been identified during the proposal definition and during the project lifetime others unforeseen risks materialized:

FORESEEN RISKS (examples):
- Failure in bringing the BPP and the MEA production from MRL6/7 to MRL8/9.
- Technical risk of tolerance summation when stacking >100 components

UNFORESEEN RISKS (examples):
- Higher costs of the vehicle
- Strong delay due to insufficient core component supply

MEASURES to MITIGATE:
- Strategies for alternative solutions
- Reorganisation of the sequence of WP tasks
- Flexible MMM design for easy adoption of different concepts (fall back options)
Communications Activities

Project Website

Newsletters

Flyer

The Fit+4-Amanda project will deliver the following outputs:

- Producing the production line: from the current 15 minutes to 30 minutes per stack.
- Developing a manufacturing machinery: an acceleration grade of more than 90%, resulting in a production rate in the range of up to 3000 stacks per year.
- Establishing the mechanical design using fatigue and other relevant models.
- Ensuring the stack’s safety by meeting mechanical and metallic standards.

The Fit+4-Amanda project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735066. This Joint Undertaking receives support from the European Union’s Research and Innovation Framework Programme H2020 under grant agreement No 683617.
Communications Activities

Development blog: since the start of the project, all major achievements and milestones have been reported and are easy to check on the website.
Dissemination Activities

Conferences / workshops
- 6 Presentation at conferences
- 4 workshops

Publications in international peer-reviewed scientific Journals
- One published and more are currently under preparation

Public deliverables
- 3 Deliverables published in the project web-site:
 https://fit-4-amanda.eu/downloads/
A new stack design is developed and capable of being processed automatically.

The Mass Manufacturing Machine is built up at Proton Motor and currently in the commissioning phase.

2019

New stacks design

2020

Validation in a test vehicle

>2020

Future application in transport

Stack components and concept optimization have been successfully carried out.

2018

Project Results (Timeline)
EXPLOITATION PLAN/EXPECTED IMPACT

- Orient the partners (during the GA and EB meetings) towards exploitation actions, including informing them about what are exploitable results and which results and activities will have an impact on the broader industry and society. Use the dissemination and exploitation plan as presented in the proposal as a platform.

- Group workshop to identify exploitable results for the technical WPs and routes to exploitation

- Compile all the findings into an integrated document, as a D7.3 (Preliminary exploitation Plan)

- Preliminary exploitation plan will be shared with the Sounding Board members – requesting their inputs, and incorporating them within the document. This will be facilitated during future GAs, and channelled through interactive exploitation workshops.

- All the findings and updates will be incorporated in the D7.4 (Updated dissemination and exploitation plan).

Innovation | Partner bringing them to the Market

1. **Automatic assembly machine for PEMFC-stacks** | Aumann

2. **PEMFC components, MEA and BPP, for mass manufacturing** | IRD Fuel cells

3. **Scalable PEMFC stacks in high batch sizes** | Proton Motor

4. **Protocols, Turn-key services** | TUC
Interactions with projects funded under EU programmes

• MAMA-MEA: Exchange of ideas regarding QC techniques; characterisation of MAMA-MEA functional layers during demonstrations of QC hardware; co-development of zero-loads

• INSPIRE: Templates; Exchange of ideas during INSPIRE’s FCH JU PEMFC development workshop

• TAHYA: Hydrogen tank hardware recommendation

• Not realised yet: REVIVE: Exchange of experiences in real life operation of mobile applications