Study on use of fuel cell hydrogen in railway environment

Study overview

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking

Brussels, 17 May 2019
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Study overview and key results</td>
<td>3</td>
</tr>
<tr>
<td>B. State of the art and high-level TCO</td>
<td>9</td>
</tr>
<tr>
<td>C. Market potential</td>
<td>15</td>
</tr>
<tr>
<td>D. Case studies</td>
<td>19</td>
</tr>
<tr>
<td>E. Barriers and recommendations</td>
<td>25</td>
</tr>
<tr>
<td>F. Project summary and closing</td>
<td>30</td>
</tr>
</tbody>
</table>
A. Study overview and key results

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
Hydrogen for rail applications is becoming more and more visible publicly – Frist FCH regional train demonstrated in Germany

Recent developments …

News

"Germany launches world’s first hydrogen-powered train"
The Guardian, 17 September 2018

"French train giant Alstom set to make UK’s first hydrogen fleet at British site"
The Telegraph, 14 May 2018

"Hydrogen fuel cell trains herald new steam age"
The Times, 13 May 2018

Benefits of FCH rail applications

- Zero emission
- Route flexibility
- Reduced noise
- Higher range compared to battery solutions
- Avoidance of electrification cost

Project example:

FCH trains in North-West Germany

| Development | Alstom presents first FCH train 2016 | LNVG contracts Alstom for 14 FCH trains 2017 | First FCH train in operation 2018 |

2016
- FCH train "Coradia iLint" development by Alstom (with support from German government)
- Northern German regional rail operator LNVG commissioned Alstom for 14 FCH trains incl. a 30 year maintenance contract
- Hydrogen is provided by a refuelling station built and operated by Linde (30 year contract)
- State government of Lower-Saxony is supporting the project

2021
- 14 FCH train and 1 station operation
The study sought to analyse the potential of FCH technology in the rail industry and to lay the groundwork for future R&I projects.

Study objectives

Main objectives

1. Provide a business case and market potential analysis per rail application and geographical area for the use of FCH technologies in the railway sector and give an overview about the state of the art as well as existing initiatives.

2. Provide case studies by rail application expressing potential opportunities and carry out a concept design for each case study compared with other alternative solutions, in a multimodal perspective.

3. Identify technical and non-technical barriers for the implementation of FCH technologies in the rail sector and show needs in terms of research and innovation, regulation and standards.

4. Produce recommendations on future activities with particular focus on short term R&I.

As a result we have:

> Assessed the potential and applicability of fuel cells & hydrogen in rail and performed the analytical work as basis for future Research & Innovation funding from EU sources such as S2R and FCH 2 JU.

Source: Roland Berger
We worked with an Advisory Board consisting of FCH and rail industry stakeholders from four System integrators / OEMs, Infrastructure/H₂ suppliers, Operators, and FCH technology providers.

Advisory Board composition

- **System integrators / OEMs**
 - ALSTOM
 - Siemens
 - CAF
 - Bombardier
 - Alpha Trains
 - SBB CFF FFS
 - ProRail
 - DB Bahn
 - ÖBB
 - Renfe
 - SNCF
 - Stagecoach

- **Infrastructure/H₂ suppliers**
 - THE LINDE GROUP
 - TRACTEBEL
e dice
 - PITPOINT CLEAN FUELS
 - AIR LIQUIDE
 - HEXAGON
 - nab.

- **Operators**
 - SYNTRAXION
 - PowerCell
 - ZILLERTALBAHN (zug · bus · dampf)
 - FUEL CELL POWERTRAIN
 - Intelligen Energy

- **FCH technology providers**
 - HYDROGENICS
 - BALLARD
 - PROTON MOTOR
 - Nedstack

Source: Roland Berger
FCH technology can become a viable alternative to replace diesel engines – First products for passenger service enter market

Shift2Rail and FCH JU study focus applications

> We analysed the potential of fuel cell and hydrogen technology for rail transport for three application areas

> Most activity visible in multiple unit application area (products already being launched)

> First insights suggest attractive use cases and good market potential

Multiple units

<table>
<thead>
<tr>
<th>Application</th>
<th>Maturity of technology</th>
<th>Range</th>
<th>Speed</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger operation in regional transport</td>
<td></td>
<td>up to 1,000 km(^1)</td>
<td>up to 140 km/h</td>
<td>30 years</td>
</tr>
</tbody>
</table>

1) Depending e.g. on # cargo/passerger, stops and topography

Shunters

<table>
<thead>
<tr>
<th>Application</th>
<th>Maturity of technology</th>
<th>Range</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunting and short distance operation</td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

1) Depending e.g. on # cargo/passerger, stops and topography

Mainline Locomotives

<table>
<thead>
<tr>
<th>Application</th>
<th>Maturity of technology</th>
<th>Range</th>
<th>Speed</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med. + long distance freight + passenger service</td>
<td></td>
<td>500-1,100 km(^1)</td>
<td>up to 120 km/h</td>
<td>30 years</td>
</tr>
</tbody>
</table>

1) Depending e.g. on # cargo/passerger, stops and topography

Source: Alstom, ÖBB, Roland Berger
FCH technology has promise in rail sector - Can be competitive with existing technology under certain conditions

Summary results

Economic

Estimated Multiple Unit Total Cost of Ownership (TCO) [EUR/km], 2022 prices

- **BASE CASE**
 - FCE: 9.0
 - Diesel: 8.0
 - FCH: 8.5
 - Diesel: 8.0

- **OPTIMISTIC**
 - FCE: 8.4
 - Diesel: 7.8
 - FCH: 8.0
 - Diesel: 7.5

- **-6%**
- **+0-5%**

Market potential

EU Market potential FCH trains – Base scenario [standard units]

- **20%**
- **27%**

Case and barrier analysis

- > 10 case studies demonstrated that FCH technology can be competitive highly dependent on specific case conditions
 - FCH technology competitive on non-electrified routes ~100 km
 - FCH attractive for routes with low utilisation
 - Low energy prices driver of competitiveness (e.g. by-product hydrogen)
- > No show-stopping barriers for FCH in rail exists but still optimization potential
- > Three research and innovation topics have been identified to tackle these barriers

Source: Roland Berger
B. State of the art and high-level TCO

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
More than 15 years of trials and demonstrations resulted in first promising commercial prototypes being created and tested

Key conclusions from state of the art review

1. **By now, trials and demonstrations for fuel cell hydrogen trains are limited** – Currently, about 20 known trials and demonstrations. However, **continued interest in FCH trains** from different countries all around the world indicates relevance of FC application in railway

2. Increased commercial interest towards FCH trains during last years resulted in **first promising train prototypes being developed and tested**; commercial operations planned

3. Some coalitions between train manufacturers and fuel cell technology suppliers have been established offering first commercial prototypes, however the **amount of commercial product available to the market** needs to increase

Source: Roland Berger
Currently, hydrogen rail vehicles are operating for example in Germany and China – More deployments to come

Geography of hydral projects

Source: Market research; Roland Berger
Under base case assumptions, FCH trains assume a cost premium of up to 14% over a diesel train.

High-level TCO assessment – Base case in 2022 [EUR/km]

<table>
<thead>
<tr>
<th>1</th>
<th>Multiple Unit</th>
<th>2</th>
<th>Shunter</th>
<th>3</th>
<th>Locomotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>8.2</td>
<td>FCH</td>
<td>9.0</td>
<td>Diesel</td>
<td>12.5</td>
</tr>
<tr>
<td>Catenary electrification</td>
<td>+6%</td>
<td>-3%</td>
<td>+13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>10.8</td>
<td>FCH</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
> FCH Multiple Units are competitive with a catenary electrified MU and assume a cost premium of EUR 0.5 per km over a diesel.
> FCH Shunters and Locomotives assume a cost premium of EUR 1.5-1.6 per km.
> Actual TCO will differ based on regional differences.

Source: Expert interviews, Roland Berger
Optimistic assumptions suggest competitiveness of the FCH train in all three applications with a TCO advantage up to 10%.

High-level TCO assessment – Optimistic case in 2022 [EUR/km]

<table>
<thead>
<tr>
<th>Application</th>
<th>TCO Difference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Unit</td>
<td>-2%</td>
<td>TCO assessment in an optimistic case is based on a potential for:</td>
</tr>
<tr>
<td></td>
<td>-10%</td>
<td>- Electricity price reduction for H₂ production</td>
</tr>
<tr>
<td></td>
<td>-9%</td>
<td>- Diesel price increase</td>
</tr>
<tr>
<td></td>
<td>-1%</td>
<td>- Reduced H₂ consumption</td>
</tr>
<tr>
<td></td>
<td>-2%</td>
<td>- FCH train CAPEX reduction</td>
</tr>
<tr>
<td>Shunter</td>
<td>-9%</td>
<td>TCO modelling suggests that FCH trains can be competitive given high annual utilisation and low energy sourcing cost</td>
</tr>
<tr>
<td>Locomotive</td>
<td>-1%</td>
<td>Source: Expert interviews, Roland Berger</td>
</tr>
</tbody>
</table>

Source: Expert interviews, Roland Berger
The TCO is mainly driven by high OPEX costs, economies of scale on the infrastructure side and asset utilisation rate.

Key TCO drivers

CAPEX and OPEX costs
- TCO is mainly driven by energy OPEX, i.e. the electricity price for on-site production or the external purchasing cost of trucked-in hydrogen.
- CAPEX for the train is still important for a competitive TCO.

Economics of scale
- Larger and high performing HRS and H₂ production facilities have a positive impact on the TCO.
- Lower power purchasing cost on the FCH train side can be expected with a larger batch purchase orders.
- Specific train components (e.g. FC stacks) show a significant cost reduction potential.

Asset utilisation
- A heavier utilisation of fuel cell system can decrease the service and maintenance intervals leading to higher costs (improvement potential).
- In contrast, a hydrogen refuelling and production infrastructure can be optimized with a higher utilisation rate due without significant hourly, daily and seasonal peaks.

<table>
<thead>
<tr>
<th></th>
<th>CAPEX¹ in the base case [EUR/km]</th>
<th>OPEX¹ in the base case [EUR/km]</th>
<th>Daily kg capacity of HRS and its CAPEX [EUR m]</th>
<th>TCO¹ given 50% utilisation of HRS and H₂ production facility² [EUR/km]</th>
<th>TCO¹ given 100% utilisation of HRS and H₂ production facility² [EUR/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>8.2</td>
<td>16%</td>
<td>84%</td>
<td>4.2</td>
<td>9.0</td>
</tr>
<tr>
<td>FCH</td>
<td>8.7</td>
<td>24%</td>
<td>76%</td>
<td>7.8</td>
<td>8.2</td>
</tr>
<tr>
<td>Catenary-electrified</td>
<td>9.0</td>
<td>32%</td>
<td>68%</td>
<td>12.6</td>
<td>8.7</td>
</tr>
</tbody>
</table>

¹) For a Multiple Unit ²) Based on a 6,000 kilogram per day station capacity

Source: Expert interviews, Roland Berger
C. Market potential

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
In the base scenario, the Market potential for FCH trains reaches 20% by 2030

EU Market potential FCH trains – Base scenario [standard units\(^1\)]

Comments
- As of 2021, the market uptake of Multiple Units starts with 30 SU
- Starting 2023, it will be followed by FCH Shunters and Locomotives
- By 2030, the market will accumulate 944 SU in all rail segments – Multiple Units taking the largest part out of FCH applications (749 SU constituting 15% of the total accumulated market uptake)

1) According to definition of UNIFE World Rail Market Report

Source: Market research, Expert interviews, Roland Berger
Even at this early stage of market development, market feedback suggests significant potential for FCH trains in Europe.

Market potential for FCH trains in Europe [standard units\(^1\)]

Additional market potential exists

Market potential for FCH trains could further increase by addressing/considering, e.g.:

- Existing green image of the rail segment and lack of awareness for the business case of FCH trains
- Long lifetime of diesel trains and short-term purchasing decisions
- Uncertainty about alternatives to FCH technology
- Market potential from export opportunities to other geographies

\(^1\) According to definition of UNIFE World Rail Market Report

Source: Market research, Expert interviews, Roland Berger
A Market potential in the base scenario is driven by FCH Multiple Units in the Frontrunner markets; by Shunters – in other markets

Overview of FCH train markets outlook for 2030 [standard units]\(^1\)

<table>
<thead>
<tr>
<th>Frontrunner</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>273</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>951</td>
<td>805</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Newcomer</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>29</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>467</td>
<td>409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Later Adopter</th>
<th>Low</th>
<th>Base</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>19</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>419</td>
<td>398</td>
<td>357</td>
</tr>
</tbody>
</table>

Comments

- The Market potential will depend on the projected diesel purchasing volumes
- Substitution of diesel trains is driven by the Multiple Units in the Frontrunner markets
- On the other hand, Shunters drive the substitution in the Newcomer and Later Adopter markets

Market share of FCH of new purchases in 2030

1) According to definition of UNIFE World Rail Market Report

Source: Market research, Expert interviews, Roland Berger
D. Case studies

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
Detailed analysis was conducted on ten case studies selected based on balanced technological and geographical perspectives.

Overview of selected case studies

<table>
<thead>
<tr>
<th>Location</th>
<th>Application</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groningen & Friesland</td>
<td></td>
<td>NL</td>
</tr>
<tr>
<td>Aragon region</td>
<td></td>
<td>ES</td>
</tr>
<tr>
<td>Montréjeau – Luchon</td>
<td></td>
<td>FR</td>
</tr>
<tr>
<td>Brasov – Sibiu (Theoretical)</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>Riga node</td>
<td></td>
<td>LV</td>
</tr>
<tr>
<td>Gdansk</td>
<td></td>
<td>PL</td>
</tr>
<tr>
<td>Hamburg-Billwerder</td>
<td></td>
<td>DE</td>
</tr>
<tr>
<td>Frankfurt (Oder) – Hamburg</td>
<td></td>
<td>DE</td>
</tr>
<tr>
<td>Kalmar – Linköping</td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>Tallinn – Narva</td>
<td></td>
<td>EE</td>
</tr>
</tbody>
</table>

Source: Roland Berger
FCH MUs present a clean, economically sensible alternative to existing technology in dense networks with many unelectrified lines.

Multiple Unit case study results [EUR/km\textsubscript{train}]

Overview

Montréal – Luchon, France
- Track length: 140 km
- Rolling stock: 3x 4 car trains (bi-mode)
- \(\text{H}_2\) consumption: 0.36 kg/km
- Characteristics: Partly electrified route with a low utilisation on 36 km

Aragon, Spain
- Track length: 165 km
- Rolling stock: 2x 4 car trains (bi-mode)
- \(\text{H}_2\) consumption: 0.31 kg/km
- Characteristics: Cross border connectivity and long rout without electrification

Groningen & Friesland, Netherlands
- Track length: 300 km
- Rolling stock: 70x 3 car trains
- \(\text{H}_2\) consumption: 0.22 kg/km
- Characteristics: Fast trains for intercity connections

CO\textsubscript{2} saving potential in one year
- Montréal – Luchon, France: 1,334 t
- Aragon, Spain: 767 t
- Groningen & Friesland, Netherlands: 56,389 t

Source: Expert interviews, Roland Berger
FCH technology is more competitive in use cases where Shunters have larger loads, idle less and travel longer distances.

Shunter case study results [EUR/km\text{train}]

<table>
<thead>
<tr>
<th>Track length</th>
<th>Hamburg-Billwerder, Germany</th>
<th>Riga Node, Latvia</th>
<th>Gdansk, Poland</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 km</td>
<td>15 Shunters</td>
<td>15 Shunters</td>
<td>10 Shunters</td>
</tr>
<tr>
<td>0.39 kg/km</td>
<td>Shunting yard in a large urban area and next to Hamburg port</td>
<td>0.49 kg/km</td>
<td>0.72 kg/km</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>20.9</td>
<td>32.1</td>
</tr>
<tr>
<td>12.7</td>
<td></td>
<td>20.4</td>
<td>36.7</td>
</tr>
<tr>
<td>11.6</td>
<td></td>
<td>21.8</td>
<td>36.9</td>
</tr>
</tbody>
</table>

CO₂ saving potential in one year

- Hamburg-Billwerder, Germany: 1,969 t
- Riga Node, Latvia: 3,350 t
- Gdansk, Poland: 339 t

Source: Expert interviews, Roland Berger
FCH Mainline Locomotives could be competitive in cases where route interoperability is limited, but still face barriers to market entry.

Mainline Locomotive case study results [EUR/km\textsubscript{train}]

Overview

<table>
<thead>
<tr>
<th>Track length</th>
<th>Tallinn – Narva, Estonia</th>
<th>Frankfurt (Oder) – Hamburg, Germany</th>
<th>Kalmar – Linköping, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 km</td>
<td>210 km</td>
<td>720 km</td>
<td>230 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rolling stock</th>
<th>Tallinn – Narva, Estonia</th>
<th>Frankfurt (Oder) – Hamburg, Germany</th>
<th>Kalmar – Linköping, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Locomotives</td>
<td>5 Locomotives</td>
<td>5 Locomotives</td>
<td>5 Locomotives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H\textsubscript{2} consumption (kg/km)</th>
<th>Tallinn – Narva, Estonia</th>
<th>Frankfurt (Oder) – Hamburg, Germany</th>
<th>Kalmar – Linköping, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.82</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Tallinn – Narva, Estonia</th>
<th>Frankfurt (Oder) – Hamburg, Germany</th>
<th>Kalmar – Linköping, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-border operation between Russia and Estonia</td>
<td>Shunting operation between several port terminals</td>
<td>Passenger and freight transport between two cities</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO\textsubscript{2} saving potential in one year (t)</th>
<th>Tallinn – Narva, Estonia</th>
<th>Frankfurt (Oder) – Hamburg, Germany</th>
<th>Kalmar – Linköping, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,556 t</td>
<td>12,874 t</td>
<td>4,980 t</td>
<td></td>
</tr>
</tbody>
</table>

Source: Expert interviews, Roland Berger
Analysis of the FCH train eco-system included several selected focus topics – One focus topic was developed in each case study

1. Renewable H₂ generation via electrolysis
2. Multimodal approach with buses/trucks/etc.
3. Interoperability with other infrastructure
4. H₂ refuelling station
5. Industrial H₂ supply
6. Regulations and permitting
7. Service and maintenance requirements
8. Safety/public acceptance of H₂ technology
9. Technical requirements

Source: Roland Berger
E. Barriers and recommendations

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
Barriers and recommendations

No barriers are show-stoppers for FCH rail technology, but R&I projects are required to realise a broader commercial potential

Task 4: Conclusions

Barriers for FCH trains

> No principle show-stoppers to the deployment of FCH technology in the rail environment exist
>
> High priority barriers are related to financing FCH train deployment, lack of standard scalable design and H₂ storage optimisation

Suggested Research and Innovation (R&I)

> R&I projects can bring FCH technology significantly closer to commercialisation by addressing high priority barriers
>
> Three key project topics
 – Large-scale demonstration of Multiple Units fleets
 – Prototype devel. and testing of Shunters or Mainline Locomotives
 – Research and tech. dev. of optimised H₂ storage system
>
> Medium, low priority barriers can integrated in the same R&I project

Source: Expert interviews, Roland Berger
Analysis identified 31 barriers in total, with most applying to all FCH train applications and other specific to certain use cases.

Overview of barriers for FCH trains

<table>
<thead>
<tr>
<th>All FCH rail applications</th>
<th>Multiple Units</th>
<th>Mainline Locomotives</th>
<th>Shunters</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Standard. scalable design</td>
<td>10. Operating hours/charging cycle life</td>
<td>20. Space needs to store (\text{H}_2) at HRS</td>
<td>25. Permitting (\text{H}_2) infrastructure</td>
</tr>
<tr>
<td>14. (\text{H}_2) storage for long range</td>
<td>17. Defuelling system</td>
<td>27. Public's experience w. (\text{H}_2) transport</td>
<td>4. Weight-performance configuration</td>
</tr>
<tr>
<td>8. Elec. FC components reliability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Roland Berger
Barriers mostly related to the trains but also to related infrastructure and social, legal and economic factors in the ecosystem

Design & Engineering
1. Additional space required by FCH system in new designs
2. Potential structural changes and redesign requirements in retrofits
3. No available designs and safety concerns for FCH bi-mode operation
4. Reduced train performance due to weight characteristics changes
5. Limited experience with designing standardised, scalable, customisable powertrain
6. Wear and tear on FCH powertrain from rail operations

Fuel cell
7. Fuel cell stack operating hours
8. Reliability of electronic FCH components in rail applications

Battery storage
9. Limited expertise in battery specifications
10. Battery sufficiency (oper. hours / cycle life)

Maintenance
16. FCH rail and maintenance programs
17. Rail H₂ maintenance defuelling system

Non-technological
23. Commitment of public stakeholders
24. No efficient / appropriate regulatory structures
25. Lack of permitting process for rail H₂ infrastructure
26. Lack of first responder training for FCH rail accidents
27. Limited public experience with H₂ technologies in transport
28. Limited rail stakeholder knowledge about FCH technologies
29. Immature FCH rail supply chain
30. Insufficient financing mechanisms supporting FCH trains
31. Complex build-up of hydrogen refuelling infrastructure

Hydrogen storage
11. Lack of knowledge designing onboard H₂ storage systems
12. Uncertainty on effective vehicle H₂ safety system
13. Optimisation potential via alternative H₂ storage solutions
14. Missing solutions for H₂ storage in Mainline Locomotives
15. Lack of solutions to connect tank systems across train cars

Hydrogen refuelling station
18. Refuelling time requirements for large amounts of hydrogen
19. Limited experience with Multi-modal operation of HRS in the rail environment
20. Large space and storage requirements of HRS
22. Lack of experience with emergency relief mechanisms of FCH system

Source: Roland Berger
Overview of recommended R&I projects

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level project scope</td>
<td>Objectives of project</td>
<td>Est. budget before funding</td>
</tr>
<tr>
<td>Large-scale demonstration of Multiple Unit train fleets</td>
<td>Development, engineering and prototype operation of Shunters or Mainline Locomotives</td>
<td>Technology development for optimised hydrogen storage system for FCH rail applications</td>
</tr>
<tr>
<td>![Train Icon]</td>
<td>![Locomotive Icon]</td>
<td>![H2 Icon]</td>
</tr>
<tr>
<td>10 - 15</td>
<td>5 - 10</td>
<td>1 - 2</td>
</tr>
<tr>
<td>![H2 Icon]</td>
<td>![H2 Icon]</td>
<td>![H2 Icon]</td>
</tr>
<tr>
<td>1 - 2</td>
<td>1 - 2</td>
<td>1 - 2</td>
</tr>
</tbody>
</table>

> Large scale demonstration project of 15 or more Multiple Units could enable the first fleet sized FCH train deployment

> Development and implementation of five new FCH Shunters or Mainline Locomotives (or ten retrofits), including concept design, engineering, and prototype

> Integrated technology development project for optimised hydrogen storage including analysing; filling pressure, tank location, cross-car connections, etc

Source: Roland Berger
F. Project summary and closing

Shift2Rail Joint Undertaking
FCH 2 Joint Undertaking
FCH technology is a promising pathway to further improve the environmental friendliness of rail transportation

Conclusion

Numerous exciting developments have taken place during the project …

"Germany launches world's first hydrogen-powered train"
The Guardian, 17 September 2018

"SNCF to run fuel cell trains in 2022"
Railway Gazette, 10 December 2018

… and the future could hold more potential

"First European hydrogen Shunters go to work in new trial"
Breaking News, 2020

"1,000th FCH train enters service, as Europe targets diesel rail emissions"
Breaking News, 2030

Source: The Guardian, Railway Gazette, Roland Berger
Consider the deployment of FCH trains as an attractive way to integrate renewables and synergize with existing initiatives. Collaboration of all stakeholders required.

<table>
<thead>
<tr>
<th>Role</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government</td>
<td>> Consider integrating FCH trains in public transport strategy</td>
</tr>
<tr>
<td></td>
<td>> Support development and deployment of FCH trains</td>
</tr>
<tr>
<td>Rail operator</td>
<td>> Investigate opportunities for the deployment of FCH trains</td>
</tr>
<tr>
<td></td>
<td>(e.g. most suitable lines, multi-modal refuelling terminals)</td>
</tr>
<tr>
<td></td>
<td>> Consider retro-fitting existing platforms with FCH technology</td>
</tr>
<tr>
<td></td>
<td>(long train lifetime)</td>
</tr>
<tr>
<td>Energy and fuel provider</td>
<td>> Assess large-scale hydrogen refuelling stations as alternative to</td>
</tr>
<tr>
<td></td>
<td>transmission grid expansion for renewables</td>
</tr>
<tr>
<td></td>
<td>> Consider possibilities to combine FCH train refuelling (baseload)</td>
</tr>
<tr>
<td></td>
<td>with other modes of transport (multi-modal transport, flexible load)</td>
</tr>
<tr>
<td>Industry/technology</td>
<td>> Adapt existing FCH train technology to local requirement</td>
</tr>
<tr>
<td>developers</td>
<td>> Market available commercial products actively</td>
</tr>
<tr>
<td>Associations and Opinion</td>
<td>> Raise awareness of technology and include FCH train in the overall</td>
</tr>
<tr>
<td>Makers</td>
<td>FCH and rail strategy</td>
</tr>
</tbody>
</table>

Source: Alstom, Roland Berger
Our Roland Berger team for today is happy to answer your questions

Study team members

Andreas Schwilling
Partner
Transportation Competence Center
- Railways and the rail supply industry sector expert
- Expert in strategy development, market analysis, reorganisation, operational topics and business process reengineering
Email: andreas.schwilling@rolandberger.com

Uwe Weichenhain
Principal
Civil Economics, Energy & Infrastructure Competence Center
- Energy and infrastructure related industries expert
- Expert in conventional and renewable energies, capital investment planning, stakeholder management, and operational excellence
Email: uwe.weichenhain@rolandberger.com

Thomas Zorn
Project Manager
Civil Economics, Energy & Infrastructure Competence Center
- Hydrogen and fuel cells industry sector expert
- Market and business case analysis, technology commercialization, strategy development in energy and mobility related industries
Email: thomas.zorn@rolandberger.com

Patrick Andrae
Senior Consultant
Civil Economics, Energy & Infrastructure Competence Center
- Public sector consulting on energy and sustainability topics
- Conventional and renewable energies, green business models and innovative technologies
Email: patrick.andrae@rolandberger.com

Source: Roland Berger