Introduction to portfolio of Hydrogen Production, Distribution and Storage projects

Nikolaos Lymperopoulos, Project Manager

www.fch-ju.eu
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:50 – 14:10</td>
<td>Introduction to portfolio of Hydrogen Production, Distribution and Storage projects</td>
</tr>
<tr>
<td></td>
<td>Hydrogen production, distribution and storage</td>
</tr>
<tr>
<td></td>
<td>Nikos Lymberopoulos</td>
</tr>
<tr>
<td></td>
<td>Question and Answer Session</td>
</tr>
<tr>
<td>14:10 – 16:00</td>
<td>Session on Hydrogen Production, Distribution and Storage</td>
</tr>
<tr>
<td></td>
<td>PANEL 5</td>
</tr>
<tr>
<td></td>
<td>Energy: Hydrogen Production, Distribution and Storage</td>
</tr>
<tr>
<td></td>
<td>Moderators: Nikos Lymberopoulos, Eden Mamut</td>
</tr>
<tr>
<td>14:10-14:40</td>
<td>BOR4STORE</td>
</tr>
<tr>
<td>14:40-15:10</td>
<td>ELECTROHYPEM</td>
</tr>
<tr>
<td>15:10-15:40</td>
<td>UNIFY</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>Storage Study – Nikos Lymberopoulos</td>
</tr>
</tbody>
</table>
• Energy - RTD - H_2 Production & Distribution

Public Awareness, Education

Market Support (SME Promotion, Demand Side Measures, etc.)

Demonstrations

- Vehicles & Infrastructure
- Low Carbon Supply Chain
- System Readiness Manufacturability
- Backup/UPS
 - Off-road H2 Vehicles
 - Micro/Portable FC

Technology, Sustainability & Socio-Economic Assessment Framework

- Specific PNR & Harmonised RCS

Research and Technological Development

- Stack & Subsystems
- Processes & Modules
- Periphery & Components
- Systems & Integration & Testing

Components

- New Technologies
- Material & Design & Degradation & Durability

Long-term and Breakthrough Orientated Research

- Transport & Refuelling Infrastructure
- Hydrogen Production & Distribution
- Stationary Power Generation & CHP
- Early Markets

Technology, Sustainability & Socio-Economic Assessment Framework
2008-2013 MAIP Targets

Energy - H₂ Production & Distribution

<table>
<thead>
<tr>
<th>Application Area</th>
<th>Targets 2010</th>
<th>Targets 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume</td>
</tr>
<tr>
<td>Hydrogen Production & Distribution</td>
<td></td>
<td>Cost and Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost of H₂ delivered at refuelling station < €5/kg (€ 0.15/kWh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved system density for H₂ storage (9 %wt of H₂)</td>
</tr>
<tr>
<td>Appropriate H₂ supply chain (including fuel purity) to match Transport, Stationary and Early Markets requirements. For 2015 10 - 20% of general H₂ demand should be produced via carbon free/carbon lean processes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCH JU Funding by Action Categories</th>
<th>Breakthrough research</th>
<th>Research & technological development</th>
<th>Demonstrations</th>
<th>Support actions</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Areas</td>
<td>€m</td>
<td>€m</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Production & Distribution</td>
<td>17-20</td>
<td>16-19</td>
<td>12-15</td>
<td>0</td>
<td>45-54</td>
</tr>
<tr>
<td>Actual</td>
<td>43</td>
<td>9.6</td>
<td>52.6</td>
<td>12.1%</td>
<td></td>
</tr>
</tbody>
</table>
2008-2013 MAIP Targets

- Energy - RTD - H₂ Production & Distribution

- RTD H₂
 - 43 M€
 - 10%

- CROSS-CUTTING
 - 28 M€
 - 6.4%

- TRANSPORT
 - 194 M€
 - 45.1%

- ENERGY
 - 209 M€
 - 48.5%

- FCH JU Contribution/M€
 - 432 M€

- No. FCH JU projects per pillar
 - 155 projects

- RTD H₂
 - 24 projects
 - 15.5%

- CROSS-CUTTING
 - 26
 - 16.8%

- TRANSPORT
 - 39
 - 25.2%

- ENERGY
 - 90
 - 58.1%
Overview of Panel 5 Projects

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline electrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM electrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RESELYSER</td>
<td>ELECTROHYPEM NOVEL</td>
<td>ADEL</td>
</tr>
<tr>
<td>High temp electrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HELMETH SOPHIA ELECTRA</td>
<td>SOL2HY2</td>
<td>ARTIPHYCTION PECDEMO</td>
</tr>
<tr>
<td>Concentrated solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo-electrochemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reformers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass gasification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 storage (boron+MH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNIfHY</td>
<td>HYTIME</td>
<td>BOR4STORE EDEN</td>
</tr>
<tr>
<td>H2 tanks & distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 bulk storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HyUnder</td>
<td>HyTransfer</td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ELY</td>
<td>ES</td>
<td>GH</td>
</tr>
</tbody>
</table>
PROGRAMME TARGETS AND ACHIEVEMENTS

• Electrolysers - 1
 – **Alkaline** *(RESELYSER)*
 • Novel cells for variable operation minimizing gas cross-over at low current density to 25%
 • Aiming for >80% η retention >90% over 1,000 on/off
 – **High temperature** *(ADEL, HELMETH, SOPHIA, ELECTRA)*
 • Completed: € 6-17/kg H_2, 1.33 A/cm², 1-5% degradation / 1,000 hours
 • Recent: 0.5-1% degradation / 1,000 hours, total η >85% electricity -> syngas, coupling to concentrated solar source
• Electrolysers - 2
 – Study: Development of water electrolysis in the EU

 • Energy system R&D – interaction of el. with grid, benchmarks, test cycles
 • Electrolyser system R&D – part-load & dynamic operation for H2 customers and provision of energy services
 • Electrolyser technology - reduce capex while maintaining reliability, increase performance (catalysts, membranes, systems)

• **Concentrated Solar (SOL2HY2)**

 • Modelling, multi-objective design and optimisation and testing of improved critical materials solutions and processes, leading to a virtual plant model

 • Sulphur depolarised electrolyser (selected), solar-powered H₂SO₄ cracker (sun-tested) and heat storage (molten salts)

 • 3 concepts chosen, critical BoP units selected, main blocks built using Aspen Plus S/W.
Programme Targets and Achievements

- **Photoelectrochemical** (ARTIPHYCTION, PECDEMO)
 - 2.5% - 5.2% sun-to-H$_2$ conversion η, 5 - 8% aim, 5% target
 - 1,000h is aim, 10,000h target
 - 100W – 3g/h aim, 100W-100kW target
PROGRAMME TARGETS AND ACHIEVEMENTS

• Reformers -1
 – Membrane reformer, 550°C, integrating RE heat sources (COMETHY)
 • Centralised SMR $\eta > 70\%$ aim, 72% target
 • >2Nm3/h aim, 2-750 Nm3/h target
 • <3vol% CO, <10vol% CO target
 – Diesel, biodiesel reforming (NEMESIS2+)
 • 70% η aim, 80% target, >1,000 h durability, 50Nm3/h prototype
• Reformers -2
 – Biogas reformer (BIOROBUR)
 • 100 kg/day aim, 50-250 kg/day target
 • CO < 10 vol% aim and target
 • Materials costs for 50 Nm³/h 150 k€, target 250 k€
 • >65% η aim and target
• Biomass gasification (UNIFHY)
 – Continous process for pure H_2 production from biomass (gasifier+WGS+PSA+thermal int)
 • H_2 cost $< € 5/\text{kg}$ for 6,000h/year operation on plant, as per target
 • 70% η aim, > 66% target
• Biological routes (HYTIME)
 – Dark fermentation of 2nd gen biomass, continuous process
 • 5L (6gr H\textsubscript{2}/day) reactor in operation, 50L ready for tests, 300L just purchased
 • 1-10 kg H\textsubscript{2}/d aim and target
 • 71% η from straw, 36% from grass, <10% kitchen waste, > 75% aim
• **H₂ storage : MH**
 – *Boron hydride-based materials (BOR4STORE)*
 • 9-10 wt.% on material basis, >6 wt.%, 4% on system basis target
 • Release temp 350-450°C, 450 °C target
 – *Mg-based materials (EDEN)*
 • 7 wt.% on material basis, >6 wt.% target
 • SOFC compatible, > 1.5 lt/min release
• H₂ distribution
 – Composite material trailers (DELIVERHY)
 • Applicable safety factors from SF=3.0 -> SF=2.25
 • 52.5 MPa most suitable, >40MPa target
 • Delivery freq. \(\downarrow \times 3 \), \(\downarrow \times 4 \), cost = LH₂
 – Faster filling (HYTRANSFER)
 • CFD and lab testing
 • Reduction of HRS OPEX and CAPEX
H₂ bulk storage

- Underground storage in salt caverns (HYUNDER)
 - Technically feasible, suitable geology, public acceptance
 - Cavern contributes €0.5/kg to cost of H₂
 - Short term: Transport sector only market for commercial operation of H₂ plant (electrolyser and storage)
PROGRAMME TARGETS AND ACHIEVEMENTS

• Studies
 – Energy Storage
 – Green Hydrogen (just launched, 1/12/2014 deadline)
 • http://www.fch-ju.eu/page/vacancies-procurement
Thank you for your attention!