Hydrogen production and distribution

RESelyser

RESelyser Logo
Key Objectives of the project The project RESelyser develops high pressure, highly efficient, low cost alkaline water electrolysers that can be integrated with renewable energy power sources (RES) using an advanced membrane concept, highly efficient electrodes and a new cell design. The project is to develop a prototype of an improved electrolyser. In this innovative materials and components, especially electrodes and separators will be utilised. These are to enhance the efficiency, reliability, durability and to reduce the costs of the electrolyser when operated variably and...

ELYGRID

ELYGRID Logo
Key Objectives of the project ELYGRID Project aims at contributing to the reduction of the total cost of hydrogen produced via electrolysis coupled to renewable energy sources, mainly wind turbines, and focusing on megawatt size electrolyzers (from 0,5 MW and up). The objectives are to improve the efficiency related to the complete system by 20% and to reduce costs by 25%. The work will be structured in 3 different parts, namely: cell improvements, power electronics, and balance of plant (BOP). Two scalable prototype electrolyzers will be tested in facilities which allow feeding with...

NEMESIS2+

NEMESIS2+ Logo
Key objectives of the project The overall objective of the NEMESIS2+ project is the development of a small-scale hydrogen generation prototype capable of producing 50 mN3 per hour from diesel and biodiesel at refuelling stations. An increase of reliability and efficiency of the hydrogen generation system and a reduction of hydrogen production costs will be the major goals. Special emphasis will be placed on liquid desulphurisation prior to the catalytic conversion step. This will be supplemented by the development of sulphur-tolerant reforming and water gas shift catalysts. By applying...

DeliverHy

DeliverHy - Logo
Key Objectives of the project Compressed hydrogen trailers are cost efficient for near term distribution. However, with the currently used 20 MPa trailers the supply of larger refuelling stations would result in multiple truck deliveries per day, which is often not acceptable. In order to increase the transported quantities, lighter materials and higher pressure must be adopted. The cost increase of the hydrogen trailers resulting from advanced technology can be off-set by the distribution cost savings from increased truck capacity. DeliverHy will assess the effects that can be...

CoMETHy

CoMETHy logo
Key Objectives of the project CoMETHy aims at the intensification of hydrogen production processes, developing an innovative compact and modular steam reformer to convert reformable fuels (natural gas, biogas, bioethanol, etc.) to pure hydrogen, adaptable to several heat sources (solar, biomass, fossil, etc.) depending on the locally available energy mix. Therefore, the developed system will be featured by two degrees of flexibility, either in terms of the feedstock that is converted to hydrogen, and in terms of the primary energy source. Indeed, CoMETHy aims at supporting the transition...

ADEL

The ADEL project (ADvanced ELectrolyser for Hydrogen Production with Renewable Energy Sources) proposes to develop a new steam electrolyser concept named Intermediate Temperature Steam Electrolysis (ITSE) aiming at optimizing the electrolyser life time by decreasing its operating temperature while maintaining satisfactory performance level and high energy efficiency at the level of the complete system including the heat and power source and the electrolyser unit. The relevance of this ITSE will be assessed both at the stack level based on performance and durability tests followed by in depth...

SSH2S

The main objective of SSH2S is to develop a full tank-FC integrated system according to the requirements of the call and to demonstrate its application on a real system. A new class of material for hydrogen storage (i.e. MM'(BH4)n mixed boroydrides) as well as an allready known system (Li-Mg-N-H) will be explored. A new concept of solid state hydrogen tank (i.e. combination of two materials) will be investigated. The application of hydrogen tank on real system will be experimented with a 1 kW prototype on High Temperature Polymer Electrolyte Membrane (HTPEM) fuel cells. On the basis of...

HYDROSOL-3D

HYDROSOL-3D aims at the preparation of a demonstration of a CO2-free hydrogen production and provision process and related technology, using two-step thermochemical water splitting cycles by concentrated solar radiation. This process has been developed in the frame of two relevant predecessor EU projects, HYDROSOL and HYDROSOL-II, co-financed within FP5 and FP6 respectively. From the initial idea over the proof of principle and several steps of improvement - that have awarded to project HYDROSOL the EU “2006 Descartes Prize for Collaborative Scientific Research” - the technology...

NEXPEL

The main objective of the NEXPEL project, a successful demonstration of an efficient PEM electrolyser integrated with Renewable Energy Sources, supports the overall vision to establish hydrogen as an energy carrier in a large range of applications in the near future.   The very ambitious objectives will be addressed by a top class European consortium which is carefully balanced between leading R&D organisations and major industrial actors from 4 member states. An iterative approach between system, sub systems and components will be applied to define its cost, performance and...

PrimoLyzer

Stationary µCHPs based on FCs are in demonstration all over the world. Almost all these systems are fed with reformed fossil fuel like natural gas. The FC-based µCHPs are more efficient than the technologies they replace, resulting in substantial reduction in the CO2 emission, calculated to be ≈1 tons CO2/year/’single family house’ when fuelled with natural gas. However, the emission reduction is five times higher when the µCHPs are fuelled with hydrogen produced with excess renewable energy e.g. wind power or photovoltaics. Hydrogen production by...

Pages

Linkedin