Biogas robust processing with combined catalytic reformer and trap

BIOROBUR
Project Information
Framework Programme: 
FP7
Call for proposals: 
2012
Application area: 
Hydrogen production & Distribution
Logo: 

In the BioROBUR project a robust and efficient fuel processor for the direct reforming of biogas will be developed and tested at a scale equivalent to 50 Nm3/h production of PEM-grade hydrogen to demonstrate the achievement of all the call mandates. The system energy efficiency of biogas conversion into hydrogen will be 65%, for a reference biogas composition of 60%vol CH4 and 40%vol CO2.

Key innovations of the BioROBUR approach are:

- The choice of an autothermal reforming route, based on easily-recoverable noble-metal catalysts supported on high-heat-conductivity cellular materials, which shows intrinsic advantages compared to steam reforming: catalysts less prone to coking, easier adaptability to biogas changing composition, more compact design, efficient handling of heat, lower materials costs, fast start-up/shut-down, easier process control, etc.

- The adoption of a multifunctional catalytic wall-flow trap based on transition metal catalysts, close coupled to the ATR reformer, which could entail effective filtration and conversion of soot particles eventually generated in the inlet part of the reformer during steady or transient operation, the decomposition of traces of incomplete reforming products (i.e. aldehydes, ethylene,…), the promotion of the WGS reaction to a significant extent so as to lower the size of the WGS unit, etc.

- The adoption of a coke growth control strategy based on periodic pulses of air/steam or on momentary depletion of the biogas feed so as to create adequate conditions in the ATR reactor for an on-stream regeneration of the catalysts, thereby prolonging the operating lifetime of the catalysts with no need of reactor shut-down.

Under the experienced coordination of Prof. Debora Fino, the project will integrate, in an industrially oriented exploitation perspective, the contribution of 9 partners (3 universities, 2 research centres, 3 SMEs and 1 large company from 7 different European Countries) with complementary expertise.

Project details
Project reference: 
325383
Topic: 
SP1-JTI-FCH.2012.2.3 - Biogas reforming
Contract type: 
Collaborative Project
Start date: 
Wednesday, May 1, 2013
End date: 
Saturday, April 30, 2016
Duration: 
36 months (originally), extended to 40 months
Project cost: 
€ 3,843,868.40
Project funding: 
€ 2,486,180
Coordinator: 

POLITECNICO DI TORINO, Italy

Contact: 
Prof. Debora Fino
Contact email: 
Other participating organisations: 
Organisation Country
TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG Germany
SCUOLA UNIVERSITARIA PROFESSIONALE DELLA SVIZZERA ITALIANA (SUPSI) Switzerland
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE France
CENTRE FOR RESEARCH AND TECHNOLOGY HELLAS Greece
Erbicol SA Switzerland
HYSYTECH S.R.L. Italy
UAB MODERNIOS E-TECHNOLOGIJOS Lithuania
(PIRELLI & C. ECO TECHNOLOGY RO SRL) Romania
Patents and Publications
Publications: 
All BioRobur Partners; Biogas robust processing with combined catalytic reformer and trap. Part 1: Catalysts and Support Design
All BioRobur Partners; Biogas robust processing with combined catalytic reformer and trap. Part 2: Tests on Demonstration Plant
Mathilde Luneau , Elia Gianotti , Frédéric C. Meunier , Claude Mirodatos , Eric Puzenat , Yves Schuurman , Nolven Guilhaume; Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas
A. Ortona; Early-stage oxidation behavior at high temperatures of SiSiC cellular architectures in a porous burner
M. Luneau , Y. Schuurman , F. C. Meunier , C. Mirodatos , N. Guilhaume; High-throughput assessment of catalyst stability during autothermal reforming of model biogas
S. Pris Hernandez Ribullon, F.Battista, S.Bensaid, B. Ruggeri, D. Fino; LCA evaluation for the hydrogen production through the innovative BioRobur project concept
All BioRobur Partners; Techno-economic analysis of green hydrogen production from biogas autothermal reforming
Linkedin